

## SEM Three

SEM Three is a three-phase energy meter that allows to monitor electrical parameters of your installation including active energy, reactive energy, voltage, current, power, maximum demand and more. These parameters are measured separately for each phase, what gives SEM Three high versatility to work as a three-phase analyzer or a triple single-phase analyzer.

The design, occupying a single DIN rail module, allows that SEM Three can be placed easily at any installation.

The device has removal connectors for power supply (85-265 Vac), external current transformers ( 250 mA output) and RS-485 communications.

The communication of measured data works over Modbus RTU standard protocol.

## TECHNICAL CHARACTERISTICS

| Power circuit |  |
| :---: | :---: |
| Input voltage | 110 .... 264 Vac |
| Frequency | $47 \ldots . .63 \mathrm{~Hz}$ |
| Maximum consumption | 2,5 ... 4,5 VA |
| Environmental conditions |  |
| Temperature range | $-10 \ldots+60^{\circ} \mathrm{C}$ |
| Humidity range | 5.... 95\% |
| Mechanical characteristics |  |
| Enclosure material | Plastic UL94 - V0 Self-extinguishable |
| Protection grade | IP30 |
| Unit dimensions (Width $\times$ Height $\times$ Length) | $18 \times 70 \times 109 \mathrm{~mm}$ |
| Weight | 70 g |
| Mounting | DIN Rail (1 module) |
| Maximum working altitude | 2000 m |
| Serial interface |  |
| Type | RS-485 three wires |
| Baud rate | 9600 / 19200 bps configurable |
| Data bits | 8 |
| Parity | Without parity / Even configurable |
| Stop bits | $1 / 2$ configurable |
| Characteristics and electrical security |  |
| Security | CAT III 300 V under EN 61010 |
| Protection class | Class II |
| External current transformers | Series TRC and TRA ( $\ln / 0,250 \mathrm{~A})$ |
| Standards |  |
| Standards | UNE EN 61010-1:2010, UNE-EN 61000-6-2, UNE-EN 61000-6-4 |

## COMMUNICATION

The device comes equipped with a RS-485 communication port to read and write the parameters of the device or other devices connected. The protocol used is Modbus RTU.

By default the device is configured with peripheral number 72 (decimal) and communication mode 4 ( 9600 bps, 8 , $\mathrm{N}, 1$ ). Using the command for changing the device number it is possible to assign any other number (maximum FF in hexadecimal or 255 in decimal).

In case you don't remember the slave number, you can return to default number and communication mode following this steps:

- Power off the device
- Press permanently reset button
- Power on the device and stop pressing the reset button


## WORKING MODE

SEM Three has 4 different working modes for measuring the electrical parameters of an installation. To change the working mode you must change the value of register "Working mode" between mode 0 (default), 1, 2 or 3 . Belong are shown the details of each mode:

- Mode 0: L1, L2 and L3 single-phase. Sum of all values measured in three-phase parameters
- Mode 1: L2 and L3 single-phase. L1 equilibrated three-phase. Sum of all values measured in three-phase parameters
- Mode 2: L3 single-phase. L1 and L2 equilibrated three-phase. Sum of all values measured in three-phase parameters
- Mode 3: L1, L2 and L3 equilibrated three-phase. Sum of all values measured in three-phase parameters

| Mode 0 | L1 |
| :---: | :---: |
|  | L2 |
|  | L3 |
| Mode 1 | L1 (x3) |
|  | L2 |
|  | L3 |
| Mode 2 | L1 (x3) |
|  | L2 (x3) |
|  | L3 |
| Mode 3 | L1 (x3) |
|  | L2 (x3) |
|  | L3 (x3) |

## CONNECTIONS AND LEDS

Input voltage of SEM Three is connected at terminals L1 and N and external current transformers are used for current metering. Next are detailed all connections and leds:


## INSTALLATION

During the installation, you must disconnect all the circuits in order to avoid any electrical risk.
If you are installing the current transformers, first connect the transformer wires to the energy meter and after that place the split or closed core around the electric cable that you want to monitor.
The SEM Three unit must be installed on an electric panel or enclosure, attached to a DIN rail (IEC 60715).
The unit must be connected to a power circuit that is protected with gl (IEC 269) or M type fuses with a rating of 0.5 to 2 A. It must be fitted with a circuit breaker or equivalent device, in order to be able to disconnect the unit from the power supply network. The power circuit must be connected with cables that have a minimum cross-section of $1 \mathrm{~mm}^{2}$.
The secondary line for the current transformer shall have a minimum cross section of $2.5 \mathrm{~mm}^{2}$.
The temperature rating of insulation of wires connected to the device will be at minimum $62^{\circ} \mathrm{C}$.

## OPERATING TIME COUNT

The module of operating time count allows to know how long a threshold value is exceeded to monitor an important time counter of a machine usage, a work shift efficiency or the generation time during a day.

SEM Three has two counters per phase and two for three-phase parameters, a counter of Partial operating time and a Total operating time, that will be activated depends on the parameter configured in Parameter for Operating time, once the Threshold for Operating time is exceeded longer than the time configured in Delay on counting for Operating time.

The value that must be written in Parameter for Operating time is shown at column Symbol of the Modbus RTU Commands. For example, to configure the Voltage, you must write the value 1 on the above-mentioned register.

MODBUS RTU COMMANDS

| Magnitude | Symbol | Registers | Unity | Function |
| :---: | :---: | :---: | :---: | :---: |
| Peripheral number | NPER | 0x00 | ID 72 (default) | 3,6,16(0x10) |
| Communication parameters | COM | $0 \times 01$ | $\begin{gathered} \text { 0: } 9600,8, \mathrm{E}, 1 \\ 1: 19200,8, \mathrm{E}, 1 \\ 2: 9600,8, \mathrm{~N}, 2 \\ 3: 19200,8, \mathrm{~N}, 2 \\ 4: 9600,8, \mathrm{~N}, 1 \\ \text { (default) } \\ \text { 5: } 19200,8, \mathrm{~N}, 1 \end{gathered}$ | 3,6,16(0x10) |
| Hardware version | HVER | $0 \times 07$ |  | 3 |
| Software version | SVER | $0 \times 08$ |  | 3 |
| Serial number | SERIAL | 0x09-0x0A |  | 3 |
| Working mode | WRKM | 0x0C | $\begin{gathered} \text { 0: L1, L2, L3 (default) } \\ \text { 1: L1(x3), L2, L3 } \\ \text { 2: L1(x3), L2(x3), L3 } \\ \text { 3: L1(x3), L2(x3), L3(x3) } \end{gathered}$ | 3,6,16(0x10) |
| Current transformer XX/250mA phase 1 | CT1 | 0x32 | 100 A (default) | 3,6,16(0x10) |
| Current transformer XX/250mA phase 2 | CT2 | 0xFA | 100 A (defaul) | 3,6,16(0x10) |
| Current transformer XX/250mA phase 3 | CT3 | 0x1C2 | 100 A (default) | 3,6,16(0x10) |
| Parameter for Operating time phase 1 | OTVAR1 | 0x278 |  | 3,6,16(0x10) |
| Threshold for Operating time phase 1 | OTVAL1 | 0x279-0x27A | V/mA/w/var/VA | 3,6,16(0x10) |
| Delay on counting for Operating time phase 1 | OTDLY1 | 0x27F | s | 3,6,16(0x10) |
| Parameter for Operating time phase 2 | OTVAR2 | 0x2DC |  | 3,6,16(0x10) |
| Threshold for Operating time phase 2 | OTVAL2 | 0x2DD-0x2DE | V/mA/w/var/VA | 3,6,16(0x10) |
| Delay on counting for Operating time phase 2 | OTDLY2 | 0x2E3 | S | 3,6,16(0x10) |
| Parameter for Operating time phase 3 | OTVAR3 | 0x340 |  | 3,6,16(0x10) |
| Threshold for Operating time phase 3 | OTVAL3 | 0x341-0x342 | V/mA/w/var/VA | 3,6,16(0x10) |
| Delay on counting for Operating time phase 3 | OTDLY3 | $0 \times 347$ | S | 3,6,16(0x10) |
| Parameter for Operating time III | OTVART | 0x3A4 |  | 3,6,16(0x10) |
| Threshold for Operating time III | OTVALT | 0x3A5-0x3A6 | V/mA/w/var/VA | 3,6,16(0x10) |
| Delay on counting for Operating time III | OTDLYT | $0 \times 3 \mathrm{AB}$ | s | 3,6,16(0x10) |
| Voltage phase 1 | VI1 (1)* | 0x02-0x03 | $\mathrm{V} \times 10$ | 4 |
| Current phase 1 | Al1 (2)* | 0x04-0x05 | mA | 4 |
| Active power phase 1 | APITOT1 (3)* | 0x06-0x07 | W | 4 |
| Reactive power phase 1 | RPITOT1 (4)* | 0x08-0x09 | var | 4 |
| Apparent power phase 1 | VAITOT1 (5)* | $0 \times 0 \mathrm{~A}-0 \times 0 \mathrm{~B}$ | VA | 4 |
| Power factor phase 1 | PFI1 (6) | $0 \times 0 \mathrm{C}-0 \times 0 \mathrm{D}$ | $\times 1000$ | 4 |
| Maximum demand phase 1 | MDI1 (7)* | $0 \times 0 \mathrm{E}-0 \times 0 \mathrm{~F}$ | W | 4 |
| $\operatorname{Cos} \varphi$ phase 1 | COSI1 (8)* | 0x26-0x27 | $\times 1000$ | 4 |
| Frequency phase 1 | FQI1 (9)* | 0x28-0x29 | $\mathrm{Hz} \times 100$ | 4 |
| Active energy phase 1 | AETOT1 | $0 \times 3 \mathrm{C}-0 \times 3 \mathrm{D}$ | Wh | 4 |
| Inductive reactive energy phase 1 | IETOT1 | $0 \times 3 \mathrm{E}-0 \times 3 \mathrm{~F}$ | varLh | 4 |
| Capacitive reactive energy phase 1 | CETOT1 | 0x40-0x41 | varCh | 4 |
| Apparent energy phase 1 | VAETOT1 | 0x42-0x43 | VAh | 4 |
| Active power consumed phase 1 | API1 (10)* | 0x258-0x259 | W | 4 |


| Inductive reactive power consumed phase 1 | IPI1 (11)* | 0x25A-0x25B | varL | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Capacitive reactive power consumed phase 1 | CPI1 (12)* | 0x25C-0x25D | varC | 4 |
| Apparent power consumed phase 1 | VAI1 (13)* | 0x25E-0x25F | VA | 4 |
| Active power generated phase 1 | NAPI1 (14)* | 0x260-0x261 | w | 4 |
| Inductive reactive power generated phase 1 | NIPI1 (15)* | 0x262-0x263 | varL | 4 |
| Capacitive reactive power generated phase 1 | NCPI1 (16)* | 0x264-0x265 | varC | 4 |
| Apparent power generated phase 1 | NVAI1 (17)* | 0x266-0x267 | VA | 4 |
| Active energy consumed phase 1 | AE1 | 0x268-0x269 | wh | 4 |
| Inductive reactive energy consumed phase 1 | IE1 | 0x26A-0x26B | varLh | 4 |
| Capacitive reactive energy consumed phase 1 | CE1 | 0x26C-0x26D | varCh | 4 |
| Apparent energy consumed phase 1 | VAE1 | 0x26E-0x26F | VAh | 4 |
| Active energy generated phase 1 | NAE1 | 0x270-0x271 | wh | 4 |
| Inductive reactive energy generated phase 1 | NIE1 | 0x272-0x273 | varLh | 4 |
| Capacitive reactive energy generated phase 1 | NCE1 | 0x274-0x275 | varCh | 4 |
| Apparent energy generated phase 1 | NVAE1 | 0x276-0x277 | VAh | 4 |
| Operating time partial counter phase 1 | OTP1 | 0x27B-0x27C | s | 4,6,16(0x10) |
| Operating time total counter phase 1 | OTT1 | 0x27D-0x27E | S | 4 |
| Voltage phase 2 | VI2 (1)* | 0x66-0x67 | $\mathrm{V} \times 10$ | 4 |
| Current phase 2 | Al2 (2)* | 0x68-0x69 | mA | 4 |
| Active power phase 2 | APITOT2 (3)* | $0 \times 6 \mathrm{~A}-0 \times 6 \mathrm{~B}$ | W | 4 |
| Reactive power phase 2 | RPITOT2 (4)* | $0 \times 6 \mathrm{C}-0 \times 6 \mathrm{D}$ | var | 4 |
| Apparent power phase 2 | VAITOT2 (5)* | 0x6E-0x6F | VA | 4 |
| Power factor phase 2 | PFI2 (6)* | 0x70-0x71 | $\times 1000$ | 4 |
| Maximum demand phase 2 | MDI2 (7)* | 0x72-0x73 | W | 4 |
| $\operatorname{Cos} \varphi$ phase 2 | COSI2 (8)* | $0 \times 8 \mathrm{~A}-0 \times 8 \mathrm{~B}$ | $\times 1000$ | 4 |
| Frequency phase 2 | FQ12 (9)* | $0 \times 8 \mathrm{C}-0 \times 8 \mathrm{D}$ | $\mathrm{Hz} \times 100$ | 4 |
| Active energy phase 2 | AETOT2 | $0 \times \mathrm{A} 0-0 \mathrm{xA} 1$ | Wh | 4 |
| Inductive reactive energy phase 2 | IETOT2 | 0xA2-0xA3 | varLh | 4 |
| Capacitive reactive energy phase 2 | CETOT2 | $0 \times 44-0 x A 5$ | varCh | 4 |
| Apparent energy phase 2 | VAETOT2 | 0xA6-0xA7 | VAh | 4 |
| Active power consumed phase 2 | API2 (10)* | $0 \times 2 \mathrm{CC}-0 \times 2 \mathrm{BD}$ | w | 4 |
| Inductive reactive power consumed phase 2 | IPI2 (11)* | $0 \times 2 B E-0 \times 2 B F$ | varL | 4 |
| Capacitive reactive power consumed phase 2 | CPI2 (12)* | 0x2C0-0x2C1 | varC | 4 |
| Apparent power consumed phase 2 | VAI2 (13)* | 0x2C2-0x2C3 | VA | 4 |
| Active power generated phase 2 | NAPI2 (14)* | 0x2C4-0x2C5 | w | 4 |
| Inductive reactive power generated phase 2 | NIPI2 (15)* | 0x2C6-0x2C7 | varL | 4 |
| Capacitive reactive power generated phase 2 | NCPI2 (16)* | 0x2C8-0x2C9 | varC | 4 |
| Apparent power generated phase 2 | NVAI2 (17)* | $0 \times 2 \mathrm{CA}-0 \times 2 \mathrm{CB}$ | VA | 4 |
| Active energy consumed phase 2 | AE2 | $0 \times 2 C \mathrm{C}-0 \times 2 \mathrm{CD}$ | wh | 4 |
| Inductive reactive energy consumed phase 2 | IE2 | 0x2CE-0x2CF | varLh | 4 |
| Capacitive reactive energy consumed phase 2 | CE2 | 0x2D0-0x2D1 | varCh | 4 |
| Apparent energy consumed phase 2 | VAE2 | 0x2D2-0x2D3 | VAh | 4 |
| Active energy generated phase 2 | NAE2 | 0x2D4-0x2D5 | wh | 4 |
| Inductive reactive energy generated phase 2 | NIE2 | 0x2D6-0x2D7 | varLh | 4 |
| Capacitive reactive energy generated phase 2 | NCE2 | 0x2D8-0x2D9 | varCh | 4 |
| Apparent energy generated phase 2 | NVAE2 | $0 \times 2 \mathrm{DA}-0 \times 2 \mathrm{DB}$ | VAh | 4 |
| Operating time partial counter phase 2 | OTP2 | 0x2DF-0x2E0 | S | 4,6,16(0x10) |
| Operating time total counter phase 2 | OTT2 | 0x2E1-0x2E2 | S | 4 |
| Voltage phase 3 | VI3 (1)* | 0xCA-0xCB | $\mathrm{V} \times 10$ | 4 |
| Current phase 3 | Al3 (2)* | 0xCC-0xCD | mA | 4 |
| Active power phase 3 | APITOT3 (3)* | 0xCE-0xCF | W | 4 |
| Reactive power phase 3 | RPITOT3 (4)* | 0xD0-0xD1 | var | 4 |
| Apparent power phase 3 | VAITOT3 (5)* | 0xD2-0xD3 | VA | 4 |
| Power factor phase 3 | PFI3 (6)* | 0xD4-0xD5 | $\times 1000$ | 4 |
| Maximum demand phase 3 | MDI3 (7)* | 0xD6-0xD7 | W | 4 |
| $\operatorname{Cos} \varphi$ phase 3 | COSI3 (8)* | 0xEE-0xEF | $\times 1000$ | 4 |
| Frequency phase 3 | FQ13 (9)* | 0XF0-0xF1 | Hz x 100 | 4 |
| Active energy phase 3 | AETOT3 | 0x104-0x105 | Wh | 4 |
| Inductive reactive energy phase 3 | IETOT3 | 0x106-0x107 | varLh | 4 |
| Capacitive reactive energy phase 3 | CETOT3 | 0x108-0x109 | varCh | 4 |


| Apparent energy phase 3 |  |  | VAETOT3 | $0 \times 10 \mathrm{~A}-0 \times 10 \mathrm{~B}$ |
| :--- | :---: | :---: | :---: | :---: |

*Only for parameters of Operating time phase 1, 2 and 3
**Only for parameters of Operating time III (three-phase)

## MODEL REFERENCE

| Model | Reference | Current secondary | Protocol | Communication |
| :--- | :--- | :--- | :--- | :--- |
| SEM Three | M010 | 250 mA | Modbus/RTU | RS-485 |

## CURRENT TRANSFORMERS REFERENCES

PickData recommends the use of efficient transformers from series TRA and TRC for SEM Three:

| Model | Reference | Maximum current | Power class | Inner diameter |
| :--- | :--- | :--- | :--- | :--- |
| TRA1 20A | T024 | 20 A | 1 | 16 mm |
| TRA1 80A | T004 | 80 A | 1 | 10 mm |
| TRA1 100A | T005 | 100 A | 1 | 16 mm |
| TRA1 250A | T025 | 250 A | 1 | 24 mm |
| TRC1 20A | T026 | 20 A | 0,5 | 13 mm |
| TRC1 100A | T006 | 100 A | 0,5 | 12 mm |
| TRC1 250A | T007 | 250 A | 0,5 | 19 mm |

## SAFETY PRECAUTIONS

| DANGER |
| :--- |
| Warns of a risk, which could result in personal injury or material damage caused by an incorrect |
| handling or installation of the unit. In particular, handling with voltages applied may result in electric |
| shock, which may cause death or serious injury to personnel. Defective installation or maintenance |
| may also lead to the risk of fire. Read the manual carefully prior to connecting the unit. Follow all |
| installation and maintenance instructions throughout the unit's working life. Pay special attention to the |
| installation standards of the National Electrical Code. |

## DISCLAIMER

PickData, SL reserves the right to make modifications to the device or the unit specifications set out in this instruction manual without prior notice.

PickData, SL on its web site, supplies its customers with the latest versions of the device specifications and the most updated manuals.

## MAINTENANCE AND TECHNICAL SERVICE

Device doesn't require maintenance.
In the case of any query in relation to unit operation or malfunction, please contact the PickData, SL technical support service.

```
PickData, SL - Technical support service
Calle Innovació, 3```

